FINAL REPORT

REVIEW OF THE DESIGN AND PERFORMANCE OF SANDWICHED PAVEMENTS

by

K. H. McGhee Senior Research Scientist

(The opinions, findings, and conclusions expressed in this report are those of the author and not necessarily those of the sponsoring agencies.)

Virginia Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Transportation and the University of Virginia)

In Cooperation with the U. S. Department of Transportation Federal Highway Administration

Charlottesville, Virginia

December 1987 VTRC 88-R9

PAVEMENT MANAGEMENT RESEARCH ADVISORY COMMITTEE

W. R. DAVIDSON, Chairman, District Engineer, VDOT
J. M. AMOS, Resident Engineer, VDOT
J. P. BASSETT, Highway Engineer Program Supervisor, VDOT
T. R. BLACKBURN, District Materials Engineer, VDOT
DR. ROBERT CHENG, Professor of Civil Engineering, Old Dominion University
C. M. CLARKE, Assistant District Engineer, VDOT
E. L. COVINGTON, JR., Assistant District Engineer - Maintenance, VDOT
T. F. FARLEY, Assistant District Engineer - Planning and Administration, VDOT
C. L. FITCHETT, Engineering Programs Supervisor, VDOT
K. H. MCGHEE, Senior Research Scientist, VTRC
W. A. MCKAY, Geologist, VDOT
M. F. MENEFEE, JR., Materials Division, VDOT
A. D. NEWMAN, Pavement Management Engineer, VDOT
B. W. SUMPTER, District Engineer, VDOT
C. S. TAYLOR, JR., Programming/Systems Development Supervisor, VDOT
R. WELTON, District Engineer, FHWA

ii

SUMMARY

The studies reported herein concern one of the basic pavement design types used by the Virginia Department of Transportation for many years. Known as a sandwiched pavement design, the pavement consists of a relatively weak aggregate base layer between a strong, asphaltic concrete upper layer and a strong cement-treated stone or cementstabilized soil lower layer.

Included in the studies were deflection analyses, performance evaluations, and the collection of aggregate base mechanical properties.

The studies show that the sandwiched pavements generally do not perform as well as conventional pavements where layers grow successively weaker from the top to the bottom of the pavement. The life expectancy for sandwiched pavements was on the average two years shorter. Studies also showed that the deflection characteristics and therefore the performance of the sandwiched pavements is strongly influenced by the amount of minus 200 material in the aggregate base layer.

A recommendation to management that the Department consider greater use of a graded aggregate base with no more than 8 percent minus 200 is included. -

SI CONVERSION FACTORS

•

Langth: In 2.54 In 0.025 4 In 0.254 8 In 0.914 4 In 0.911 4	To Convert From	To	Multiply By
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Length:		
n 0.025 4 ft n 0.304 8 n n n 0.304 8 n 9.304 100 10 n 1.638 708 100 n n n 1.638 708 100 n n n n n 1.638 708 100 n n n n n n n n n n n n n n n n n n n n	[]	CM	2.54
time 0.304 8 time 0.914 4 time 0.920 304 E-00 time 9.290 304 E-00 time 9.290 304 E-00 time 1.600 E+00 time 1.638 706 E-00 time m3	 1 n	M	0.025 4
m m 0.914 4 n1 m 1.609 344 krss:		11	0.304 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/d	1	0.914 4
xres: cn_2^2	11	km	1 . 609 344
$ \begin{array}{c} n_2^2 \\ m_2^2 $	lrea:		
m2 m2 9.280 304 E-01 md2 m3 2.389 988 E+01 retre (a) Hectares 2.387 353 E-01 rotume: m3 2.957 353 E-02 rotume: m3 2.463 352 E-01 rotume: m3 2.463 528 E-01 rotume: m3 2.831 685 E-02 rotat m3 2.831 685 E-02 rotat m3 2.831 685 E-02 volume NOTE: lm3 1.638 706 E-02 rd2 m1 m3 sec 2.831 685 E-02 rd3 sec 2.831 685 E-02 2.731 177 F-03 rd2 main m3 sec 1.551 1.74	2	cm ²	6.451 600 E+00
$ \frac{1}{2} - \dots + \frac{1}{2} - \frac{1}{2} -$	2 • • • • • • • • • • • • • • • • • • •	m	9.290 304 E-02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7d	2	8.361 274 E-01
crr (s) Hectares 4.046 856 E-01 folume: n_3^3 2.957 353 E-00 st n_3^3 9.463 529 E-00 rt n_3^3 9.463 529 E-01 rt n_3^3 3.785 412 E-0 n_3^3	⁻²	Hectares	2.589 988 E+02
To lume: $y_{1} = \dots = $	cre (a)	Hectares	4.046 856 E-01
n3 2.957 353 E-0; n4	7olume:		
xt m3 xt xt <td< td=""><td>)Z+====================================</td><td> m₃</td><td>2.957 353 E-05</td></td<>)Z+====================================	m ₃	2.957 353 E-05
tr m3 3.785 412 E-0 m3 m3 3.785 412 E-0 m3 m3 7.645 549 E-01 volume NOTE: lm3 - 7.645 549 E-01 volume n3/sec 2.834 952 E-02 - 7.645 549 E-01 volume m3/sec 1.551 174 F-03 - 6.309 920 E-02 ses: z 2.834 952 E-02 - - - - - - - - - - - - - -)t	m3	4.731 765 E-04
a1		¤	9.463 529 E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38]	m ₃	3.785 412 E-03
tright m3 2.831 685 E-0: d^3 m3 7.645 549 E-0: volume NOTE: $lm^3 - 1,000 L$ 1.718 e-0: d^3 m3/sec 2.831 685 E-0: d^3 m3/sec 2.711 17 E-0: d^3 m3/sec 1.74 258 E-0: d^3 m3/sec 6.309 020 E-0: d^3 sec 1.555 174 E-0: d^3 sec 1.555 174 E-0: d_3 sec 9.071 847 E+0:? d_3 sec 9.071 847 E+0:? d_4 sec 9.071 847 E+0:? d_4 d_5 d_2 d_5 d_1 d_2 d_2 d_1 d_1 d_2 d_1 d_2 d_2 d_2 d_1 d_2 d_2 d_2 d_2 d_1 d_1 d_2	[n]	m ₃	1.638 706 E-05
rd m^2 7.645 549 $E-01$ Volume NOTE: lm^3 = 1,000 L Image: 100 L er Unit m_3^3/sec 2.831 685 $E-04$ r_3/min m_3/sec 2.834 695 $E-02$ r_3/min m_3/sec 6.309 020 $e05$ r_2 2.834 952 $E-02$ r_{39} $e02$ $e05$ r_2 $e01$ m_3/sec $e039$ $e02$ $e05$ $e02$ $e0$: t	¤3	2.831 685 E-02
NOTE: $lm^3 = 1,000$ L er Unit $m_3^3/sec - \dots + 4.719$ 474 E-04 $t_3^3/min - \dots + m_3^3/sec - \dots + 1.274$ 258 E-02 $n_3min - \dots + m_3^3/sec - \dots + 1.274$ 258 E-02 $n_3/min - \dots + m_3^3/sec - \dots + 1.274$ 258 E-02 $m_3/sec - \dots + 1.555$ 174 F-03 $m_3/sec - \dots + kg^{-1}$ m	/d ⁻	M [~]	/.645 549 E-01
er Unit Time: t_3^/min m_3/sec 4.719 474 E-04 t_3/sec 2.831 685 E-02 g/min m_3/sec 2.731 177 E-07 d/min m_3/sec 1.274 258 E-02 ses: 2.831 695 2 E-02 wt m/sec 6.309 020 E-05 ses: 2.834 952 E-02 wt tsg 1.555 174 F-03 b tsg 1.555 174 F-03 b tsg 9.071 847 E+03 sass per 0.001 lb) kg 4.394 185 E+01 sass per 0.011 t 01mt 01me: b/yd_3 b/res 2.767 990 E+04 kg/m_3 2.767 990 E+04 kg/m_3 5.932 764 E-01 sass per Unit kg/m_3 1.601 846 E+01 b/yd_3 m_s 3.048 000 E-01 in/s includes Speed) tsg/main 5.932 764 E-01 includes Speed) m/s 5.144 444 E-01 in/h m/s 5.144 444 E-01 in/s in/h min A.708 026 E+01 in/s E-01 <	Volume NOTE: 1m ³	= 1,000 L	
t3/min m3/sec 4.719 474 E-04 m3/sec 2.831 685 E-02 m3/min m3/sec 2.731 177 E-07 m3/min m3/sec 1.274 258 E-02 m3/sec 6.309 020 E-05 fass: m3/sec 6.309 020 E-05 sec sec 6.309 020 E-05 fass: m3/sec 6.309 020 E-05 sec kg 1.555 174 E-02 bb kg 1.555 174 E-02 bc kg 9.071 847 E+02 iass per Unit 9.071 847 E+02 iass per Unit kg/m3 1.601 846 E+01 bb/rd3 kg/m3 1.601 846 E+01 kg/m3 5.932 764 E-01 Yelocity: Includes Speed) S.932 764 E-01 Yelocity: Includes Speed) S.144 444 E+00 Yelocity: Includes Speed) S.144 444 E+00 Yelocity: Includes Speed) Sis Sec Yelocity: Includes Speed) Sis Sec Sec Yelocity: Incloc Sis Sis <	er Unit Time:		
t_3/sec 2.831 685 E-02 n_3/min m_1/sec 2.731 177 E-07 t_3/min m_3/sec 1.274 258 E-02 sal/min m_3/sec 1.274 258 E-02 sal/min m_3/sec 6.839 020 E-05 sas: xz xz sz kg 1.274 258 E-02 sas: xz 2.834 952 E-02 wt kg 1.555 174 F-05 b- kg 1.555 174 F-05 bc kg 9.071 847 E+03 sass per 0.071 847 E+03 unit ion (2000 1b) kg/m_3 b/yd_3	t_/min	m ³ /sec	4.719 474 E-04
n³/min m³/sec 2.731 177 E-07 m³/sec 1.274 258 E-02 sas: m³/sec 6.309 020 E-05 sas: z 1.555 174 E-02 b kg 9.071 847 E+02 sass per Unit 4.535 924 E-01 b/ra_ kg/m³_ 2.767 990 E+04 b/ra_ kg/m³_ 1.601 846 E+01 b/rd kg/m³_ 5.932 764 E-01 elocity: Includes 5.932 764 E-01 speed) t/s 5.144 444 E-01 t/s 5.144 444 E-01 1.609 344 E+00 orce Per mit Area: bf/in²_2 or ps1 Pa bf/ft² Pa 6.894 757 E+03 stacsity: St 1.000 000 E-06 s_ m²/s 1.000 000 E-06	t_/s	m_/sec	2.831 685 E-02
d ³ /min m ³ /sec 1.274 258 E-02 sal/min m ³ /sec 6.309 020 E-05 sass: z 2.834 952 E-02 wt kg 1.555 174 F.03 b kg 4.555 174 F.03 con (2000 lb) kg 9.071 847 E+07 sass per Unit yd.767 990 E+04 b/yd ² kg/m ³ 2.767 990 E+04 b/yd ³ kg/m ³ 5.932 764 E-01 b/yd ³ s.932 764 E-01 kg/m ³ b/yd ³ s.932 764 E-01 kg/m ³ includes s.932 764 E-01 kg/m ³ speed) t/s 5.932 764 E-01 t/s s.3.048 000 E-01 s.932 764 E-01 includes speed) speed) s.144 444 E-01 t/s s.144 444 E-01 second second in/s s.144 444 E-01 second second orce ps second second second orce second m/s second second second orce ps second second second	n_/min	m_/sec	2.731 177 E-07
m ³ /sec 6.309 020 E-05 isss: kg 6.309 020 E-05 isss: kg 1.555 174 F-05 b	'd ³ /min	m_/sec	1.274 258 E-02
lass: kg	sel/min	m ³ /sec	6.309 020 E-05
xz xz <td< td=""><td>lass :</td><td> ko</td><td>2 834 052 E-02</td></td<>	lass :	ko	2 834 052 E-02
kg kg 1.253 924 E-01 ion (2000 1b) kg 9.071 847 E+07 iass per y.071 847 E+07 ib/rig	v+		1 555 174 F-03
isss per 9.071 847 E+02 isspecified 9.071 847 E+02 isspecified 9.071 847 E+02 isspecified 9.048 000 E-01 isspecified 9.048 000 E-01 isspecified 9.048 000 E-01 isspecified 9.048 000 E-01 isspecified 9.048 E+01 isspecified		kg	4 535 924 F-01
isss per Unit Volume: kg/m ² / ₃	on (2000 1b)	kg	9.071 847 E+02
Unit Volume: Lb/yd ² kg/m ² 4.394 185 E+01 kg/m ³ 2.767 990 E+04 kg/m ³ 1.601 846 E+01 kg/m ³ 1.601 846 E+01 kg/m ³ 1.601 846 E+01 kg/m ³ 5.932 764 E-01 Velocity: (Includes Speed) Et/s m/s 3.048 000 E-01 m/s 4.470 400 E-01 m/s 5.144 444 E-01 m/s 5.144 444 E-01 m/s 5.144 444 E-01 km/h 1.609 344 E+00 Vorce Per Vait Area: .bf/in ² or psi Pa 6.894 757 E+03 Pa 4.788 026 E+01 Viscosity: .st m ² /s 1.000 000 E-06 Pa's 1.000 000 E-06 Pa's 1.000 000 E-06	lass per		
Xolume: kg/m ² /m ²	Unit		
kb/yd3 kg/m3 4.394 185 E+01 kg/m3 2.767 990 E+04 kg/m3 1.601 846 E+01 kg/m3 5.932 764 E-01 Velocity: xg/m3 (Includes 5.932 764 E-01 Speed) m/s 3.048 000 E-01 it/s m/s 5.144 444 E-01 mi/h m/s 5.144 444 E-01 mi/h m/s 5.144 444 E-01 in/h m/s 6.894 757 E+03 bf/in2 or psi Pa bf/ft2 and the set bf/ft2 pa 4.788 026 E+01 Viscosity: m²/s 1.000 000 E-06 pa's 1.000 000 E-06 pa's 1.000 000 E-06	/olume:		
b/yd3 kg/m3 4.394 185 E+01 b/ft3 kg/m3 2.767 990 E+04 kg/m3 kg/m3 1.601 846 E+01 kg/m3 kg/m3 1.601 846 E+01 kg/m3 kg/m3 5.932 764 E-01 Velocity: (Includes Speed) m/s 3.048 000 E-01 it/s m/s 3.048 000 E-01 minh	. 2	2	
b/inj 2.767 990 E+04 b/ftj 1.601 846 E+01 kg/mj 1.601 846 E+01 kg/mj 5.932 764 E-01 /elocity: Includes Speed) 3.048 000 E-01 it/s 3.048 000 E-01 m/s 4.470 400 E-01 m/s 5.144 444 E-01 m/s 5.144 444 E-01 m/s 1.609 344 E+00 Porce Per km/h bf/in ² /12 or psi bf/ft ² or psi s 9a s 1.000 000 E-06 Pa 1.000 000 E-06 Pa's 1.000 000 E-06	b/yd	kg/m ₃	4.394 185 E+01
b/rt	b/in	kg/m3	2.767 990 E+04
kg/m 5.932 764 E-01 kg/m 5.932 764 E-01 includes speed) it/s m/s m/s 3.048 000 E-01 m/s m/s m/s 4.470 400 E-01 mot m/s m/s 5.144 444 E-01 m/s m/s m/s 5.144 444 E-01 i/h m/s m/s 5.144 444 E-01 i/h km/h i/h km/h i/s 6.894 757 E+03 bf/in ² /s Pa i/scosity: s m ² /s pa's 1.000 000 E-01	.b/ft	kg/m3	1.601 846 E+01
We locity: Includes Speed) it/s	.D/Yd	kg/m ⁻	5.932 764 E-01
(Includes Speed) it/s	Velocity:		
Speed) it/s it/h	Includes		
it/s m/s 3.048 000 E-01 m/s m/s 4.470 400 E-01 mot m/s 5.144 444 E-01 m/s in/s 1.609 344 E+00 Vorce Per km/h 1.609 344 E+00 Vorce Per Pa 6.894 757 E+03 bbf/in ² or ps1 Pa 4.788 026 E+01 Viscosity: m ² /s 1.000 000 E-06 pa's 1.000 000 E-01	Speed)		
m/s 4.470 400 E-01 mot m/s 5.144 444 E-01 m/s 5.144 444 E-01 m/s 1.609 344 E+00 Vorce Per mit Area: bf/in ² or ps1 6.894 757 E+03 bf/ft ² Pa //scosity: bf m ² /s 1.000 000 E-06 Pa's 1.000 000 E-01	t/s	m/s	3.048 000 E-01
m/s 5.144 444 E-01 mi/h km/h 1.609 344 E+00 Vorce Per km/h 1.609 344 E+00 bf/in2 or psi Pa 6.894 757 E+03 bbf/ft2 Pa 6.894 757 E+03 /iscosity:	11/h	m/s	4.470 400 E-01
mi/h km/h 1.609 344 E+00 Force Per Nit Area:	not	m/s	5.144 444 E-01
Parent Parent 6.894 757 E+03 bf/in ² or psi Parent 6.894 757 E+03 bf/ft Parent 4.788 026 E+01 'iscosity: Parent 1.000 000 E-06 Parent Parent 1.000 000 E-01 St Parent 1.000 000 E-01	11/h	km/h	1.609 344 E+00
bf/in_2^2 or psi Pa 6.894 757 E+03 bf/ft^2 Pa 6.894 757 E+03 bf/ft^2 Pa 4.788 026 E+01 'iscosity: a^2/s 1.000 000 E-06 bf'_s a^2/s 1.000 000 E-01 bf'_s a^2/s a^2/s	force Per		
$\frac{bf}{ft^2} \text{ or } psi 6.894 757 E+03 \\ \frac{bf}{ft^2} 6.894 757 E+03 \\ Pa 7 8 7 8$	Init Area:		
Lbf/ft ² Pa 4.788 026 E+01 /iscosity: m ² /s 1.000 000 E-06	lbf/in ² or psi	Pa	6.894 757 E+03
Yiscosity: S t m ² /s 1.000 000 E-06 Pa 's 1.000 000 E-01	bf/ft ²	Pa	4.788 026 E+01
St The second 			
m^2/s = 1.000 000 E-06 Pa's = 1.000 000 E-01	/iscosity:		
Pa's 1.000 000 E-01	S	m ² /s	1.000 000 E-06
, 	, t	Pa's	1.000 000 E-01
	•		

FINAL REPORT

REVIEW OF THE DESIGN AND PERFORMANCE OF SANDWICHED PAVEMENTS

Ъy

K. H. McGhee Senior Research Scientist

INTRODUCTION

For a number of years the Virginia Department of Transportation has used as one of its basic pavement designs a cross section incorporating a 6-in thick soil cement subgrade, a 4- to 8-in thick aggregate base, and 4 or more inches of bituminous concrete. Used to provide a stable pavement foundation in poor soil areas, the soil cement layer normally contains about 10 percent portland cement by volume. The aggregate base is a densely graded material designated in Virginia specifications as No. 21 or No. 21-A or a similarly graded local sand and gravel. In some instances, a layer of cement-treated aggregate is used in lieu of the soil cement-stabilized subgrade. Because of the presence of the weaker aggregate layer between the strong cement-stabilized layer and the bituminous concrete layer, both of the above cross sections have become known as "sandwiched" pavements.

While the widespread use of sandwiched pavements was encouraged, and their generally good performance was documented in earlier research studies (1), it has been noted in recent years that some such pavements have not performed up to original expectations. In the latter cases studied, Virginia strength equivalency values for the aggregate bases have been found to be significantly lower than given in design tables, sometimes to the point of having negative values (2, 3). Several studies with an apparent bearing on the poor performance of some sandwiched pavements have shown (1) that the weak sandwiched layer should be no more than 4-in thick (4); (2) that when the sandwiched layer is weak enough, the strength of the lower sandwiching layer is not mobilized (5); and (3) that aggregate base courses should have a design minus 200 fraction of no more than 7 percent if maximum strength and adequate drainage are to be achieved (7).

In none of the above studies were sufficient data collected to permit the development of strength equivalency values for the weak sandwich layers of various thicknesses and gradations. The present study was undertaken in an effort to correct some of those deficiencies.

PURPOSE AND SCOPE

The purpose of the study was to collect performance and deflection data from in-service pavements containing sandwich layers and to develop appropriate guidelines for the use of such layers. Data were collected from 26 sandwich pavements and 5 non-sandwich (control) pavements over a range of pavement ages and traffic exposures. The pavements studied are fully described in Appendix 1. Note that four of the non-sandwich pavements are constructed of asphaltic concrete on a cement-treated aggregate base underlaid by a soil cement foundation. The fifth is thick (11.5 in) asphaltic concrete directly on the soil cement.

METHODOLOGY

Structural Evaluation

Dynaflect deflection tests were conducted on each pavement segment to determine 5-sensor deflection basin characteristics. Methods developed by Vaswani (5) utilizing the Chevron layer analysis program were employed to determine the subgrade modulus, to examine layer interactions, and to determine strength coefficient for the layers. All deflection data are tabulated in Appendix 2.

Performance Evaluation

At the time deflection tests were conducted, evaluations of the condition of the pavement were performed using methods employed by the Department in the pavement management process ($\underline{6}$). Subsequent evaluations by pavement management personnel and the accumulated 18-kip equivalent axle loadings corresponding to each evaluation permitted the development of performance characteristics for those pavements for which full data were available. Detailed evaluation data are tabulated in Appendix 3.

Aggregate Base Evaluations

While it was originally envisioned that aggregate base samples would be collected from projects showing exceptionally good or exceptionally poor performance, it soon became evident that such sharp delineations of performance were not going to materialize. Since it was not within the scope of the study to collect and analyze samples from all projects, it was decided that project records and data base files for the sources of the materials would be used. While it was recognized that such file data would be subject to more uncertainty than would samples from the road, it is also clear that statistically it would be better to have some data from all projects. Aggregate base samples taken from sites 4 and 22, both of which were especially poor performers with around 9 percent minus 200, showed that the bases were saturated due to poor drainage characteristics and to the "bathtub" designs.

The data of primary interest, gradations and Atterberg limits, are tabulated in Appendix 4. The alphabetical source codes in that tabulation refer to commercial stone producers whose names are available in Research Council files.

The gradation design ranges for the No. 21-A aggregate base material used in virtually all sandwiched projects is given in Table 1. The Department's specifications provide for suitable tolerances (\pm 3%) once the producer chooses his job mix from the values given in Table 1 (8). These tolerances, then, provide an extremely wide operating range that can result in large variations in the end product from different producers. For example, the percentage passing the No. 200 sieve can range from 5 to 15 percent for individual test results.

Table 1

Sieve	Percentage Passing (by weight)
2"	100 94-100
3/8"	63-72
No. 10 No. 40	32-41 16-24
No. 200	8-12

Design Ranges for No. 21-A Base Material

575

RESULTS AND DISCUSSION

Structural Evaluation

Detailed analysis of deflection data showed that the sandwiched pavements do not develop the design structural strength as measured by the thickness index (2, 4). The contrast between sandwiched and non-sandwiched pavements in their ability to develop the design structural strength is shown clearly in Table 2.

Table 2

Structural Strength Development

	Design	Thickness	Effectiv	ve Thickness		
	-	Index	-	Index	Design	Efficiency
	Sandwich	Non-Sandwich	Sandwich	Non-Sandwich	Sandwich	Non-Sandwich
•	10.7	15 0	67	16 6	62 6	105 0
Average	10.7	15.8	0./	10.0	02.0	105.0
Std. Dev.	1.4	1.2	1.9	1.9		

Note in Table 2 that, on the average, the sandwiched designs were able to develop only 62.6 percent of the design structural strength while the non-sandwiched pavements averaged 105 percent.

While a major purpose of the present study was to develop strength equivalency values for sandwiched pavement systems, attempts to do so on the sandwich pavements studied were unsuccessful. If asphaltic concrete and cement-treated layers are assumed to have developed their expected strengths, then the aggregate base course contribution to overall pavement strength was negative in nearly every case; i.e., the pavements were better off without the aggregate base layer. The computed average equivalency of the aggregate base, based on the data in Table 2 and Appendix 1, is -0.30 as opposed to a design value of 0.35. Since such a conclusion is ridiculous, it is the author's contention that the observation made by Vaswani in earlier studies is true: the strength of the lower sandwiching layer is not mobilized and does not realize its design strength (5). It is clear that no meaningful equivalency values can be developed from the data collected in the present study.

The deflection characteristics from which the effective thickness index values were developed are given in detail in Appendix 2 and are summarized in Table 3.

Table 3

Average Deflection Characteristics

Pavement Type	Maximum Deflection (in)	Spreadability	Subgrade Modulus	Pavement Thickness (in)
Sandwich	.026	55.4	9400	17.5
Non-Sandwich	.012	79.0	12000	

The data clearly shows the large difference in maximum deflection and in the spreadability values between the sandwiched and non-sandwiched pavements. The deflection difference is no doubt partially due to small differences in subgrade strength, pavement thickness, and layer compositions. Statistical analysis, however, shows that aggregate base gradation, particularly the percentage passing the No. 200 sieve, is a major contributor to the total deflection. The multiple regression equation of best fit is

DEFL =
$$0.0044$$
 (PP200) - 1.8×10^{-6} (ES) (1)

where

DEFL = deflection
PP200 = percentage of aggregate base passing the No. 200 sieve
ES = subgrade modulus.

r

The coefficient of determination (R^2) of equation (1) is 0.879, indicating a significant relationship at a 99 percent confidence level for the 26 sandwich pavements studied. A similar analysis for the 5 nonsandwiched pavements shows that the deflection is a function only of the subgrade modulus and the pavement thickness.

The deflections predicted from equation (1) are plotted in Figure 1 as a function of the measured deflections. While the figure shows a strong overall relationship between measured and predicted deflection, it is also evident that due to variation unexplained by the equation, the equation would not be a good deflection predictor for an individual project.

MEASURED DEFLECTION (in.)

Performance Evaluation

Performance equations for both the sandwich and non-sandwich pavements were developed through methods described by the author in an earlier study ($\underline{6}$). In that study, the general form of a pavement deterioration equation was:

$$DMR = 100 - A (ESAL)^{D}$$

DMR is the distress maintenance rating, Virginia's measure of pavement surface condition computed through a deduct system comprised principally of cracking and rutting distresses. The coefficient (A) and exponent (B) are load and design variables for a particular pavement, and ESAL is the cumulative 18-kip axle loading sustained by the surface at the time the DMR is determined.

A weighted averaging of the detailed performance data given in Appendix 3 yielded equations (3) and (4) for the sandwich and non-sandwich pavements, respectively.

1 01

Sandwich	pavements:	DMR =	100	- 56.7	$(ESAL)^{1.21}$	(3)
Non-sandwich	pavements:	DMR =	100	- 3.47	(ESAL) ^{2.33}	(4)

Note that these equations reflect average values and do not purport to represent particular pavements. They do, however, show significant differences in the performance behavior of the two pavement types. Their difference is shown graphically in Figure 2 in which both deterioration curves are plotted using the initial average daily 18,000 lb equivalent axle loads (ESAL-18) for each pavement type. These initial values were 105 and 393 for the sandwich and non-sandwich, respectively. A 5 percent annual traffic growth rate was used, and the curves depict DMR as a function of age to normalize the data and demonstrate the performance difference between the two pavement types. According to Virginia's design procedure both pavement types should perform similarly with traffic differences accommodated by structural differences. However, when judged on the basis of time required to reach the terminal DMR of 78 (9) used in Virginia for rehabilitation of primary system flexible pavements, it can be seen that there is an average two-year difference in performance in favor of the non-sandwich pavements.

An examination of the age-to-terminal DMR data in Appendix 3 shows that the life expectancy of the sandwich pavements is much more variable than the non-sandwich, but that the two year average difference is statistically significant at over the 90 percent confidence level. Given the large differences in pavement response to loads measured by deflection, the differences in performance are not surprising.

(2)

Figure 2. Pavement deterioration curves.

Relationship Between Pavement Performance and Aggregate Base Properties

In an effort to identify possible relationships between performance of the sandwich pavements and the properties of the aggregate base materials, a multiple regression analysis of the data given in Appendices 1 through 4 was performed. Specifically, the analysis was directed at determining statistically significant relationships between the performance equation parameters A and B in equation (2) and traffic, design, and materials variables. The significant relationships identified are given in equations (5) and (6) where LNA is the natural logarithm of the coefficient (A), ACT is the thickness of the asphaltic concrete portion of the pavement, PP200 is the percentage of the aggregate base passing the No. 200 sieve, and LNB is the natural logarithm of the exponent (B).

$$LNA = 0.949 (PP200) - 0.839 (ACT)$$
 (5)

$$LNB = 0.208 (LNA) - 0.645$$

Equations (5) and (6) have coefficients of determination (R^2) of 0.894 and 0.274, respectively. While both are highly significant with 24 degrees of freedom, it is clear that the interaction of variables is much better explained by equation (5) than by equation (6). That is, there is a strong relationship among the performance curve parameter (A), the interaction of asphaltic concrete thickness, and the percentage of the aggregate base passing the No. 200 sieve. The relationship between A and B, while statistically significant, could not be used with confidence in predicting pavement performance.

In addition to the low R^2 for equation (6), equations (5) and (6) have another serious limitation in that the pavements studied had aggregate bases with a relatively narrow range (7.2 to 12.2) of values for the percentage of aggregate passing the No. 200 sieve. Thus, the equations are not representative of the gradation of aggregate bases having less than 7 percent of the aggregate passing the No. 200 sieve, where one would expect the best pavement performance (based on other studies where both strength and drainage were shown to be much improved) (7). Nevertheless, an analysis of equations (5) and (6), which were used to develop performance equations for 8 percent and 10 percent passing the No. 200 sieve with other factors being equal, shows that performance would be much improved if bases with fewer fines were provided. This is shown graphically in Figure 3 where the average asphaltic concrete thickness (6 1/4 in) and average prevailing daily 18-kip equivalent axle loads (288) for the 26 sandwich projects were used.

The reader is cautioned that the dramatic difference in projected pavement performance indicated in Figure 3 is based on statistically determined relationships and for that reason is subject to question. However, it is clear from that figure and from the strong adverse effect on deflections of high percentages of minus 200 base material that better pavement performance could be expected if the minus 200 fraction was restricted to the levels indicated in earlier studies (7).

(6)

Pavement deterioration as effected by percentage passing the no. 200 sieve for AC thickness = $6 \ 1/4$ inches. Figure 3.

CONCLUSIONS

Taking account of the limitations of the data available for analysis in this study, the following conclusions appear to be justified.

- 1. The life expectancy of pavements constructed with sandwiched layers is significantly less than for those constructed in a more conventional manner where the strength of each layer is no greater than that of its overlying layer.
- 2. The average difference in life expectancy between sandwich and non-sandwich pavements is approximately two years in favor of the non-sandwiched.
- 3. The performance characteristics of sandwich pavements are significantly influenced by the percentage of aggregate base material passing the No. 200 sieve. Indications are that when the sandwich bases have no more than about 8 percent minus 200, performance will be similar to that for non-sandwich pavements. Higher percentages of minus 200 have a dramatic negative impact on pavement performance.

RECOMMENDATIONS

In view of the conclusions enumerated above, it is evident that serious consideration should be given to more widespread use of aggregate bases containing less than 8 percent minus 200. Such an aggregate base was developed in earlier studies based on an optimization of drainability and strength $(\underline{7})$. The base material, designated No. 21B, appears in the latest specifications of the Department and has a design minus 200 range of 6 percent to 8 percent $(\underline{9})$. As was noted at the time that specification was developed, widespread use of the No. 21B material would affect construction because it is slightly more difficult to compact and it would also affect some producers who already have excessive fines.

Nevertheless, when the sandwich type of design is indicated for other reasons, the author recommends that Department managers and pavement designers seriously consider the use of the 21B aggregate base as the standard. There appears to be no discernable problem with the 21A material for other types of design, although better drainage would be expected with the 21B in all cases.

GUIDELINES FOR USE OF SANDWICHED PAVEMENT DESIGNS

Results of the study were such as to severely limit the anticipated development of guidelines for the use of sandwiched pavements. As a consequence, the author offers only the advice that the Department should attempt to restrict the minus 200 fraction of aggregate bases used as sandwiched layers to no more than 8 percent.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the contributions of G. V. Leake, former materials technician, and R. W. Gunn, materials technician supervisor, through their efforts in data collection and analysis. Special thanks go to M. A. McDaniel for her efforts in record keeping, keypunching of computer entries, and typing of the report.

The work was performed under the general direction of H. H. Newlon, Jr., research director, and was funded through the Federal Highway Administration HPR program.

REFERENCES

- 1. McGhee, K. H. 1972. "Final report on phase A, Performance study of typical Virginia pavements." Virginia Highway Research Council.
- 2. Vaswani, N. K. 1969. "Recommended design method of flexible pavements in Virginia." Virginia Highway Research Council.
- 3. McGhee, K. H. 1979. "Final report, Evaluation of experimental flexible pavements." Virginia Highway and Transportation Research Council.
- 4. Vaswani, N. K. 1972. "Interim report no. 4, Pavement design and performance study, phase B - deflection study: Evaluation of sandwich layer system of flexible pavements in Virginia." Virginia Highway Research Council.
- 5. . . 1969. "Optimum structural strength of materials in flexible pavements." Virginia Highway Research Council.
- 6. McGhee, K. H. 1984. "Development of a pavement management system in Virginia. Final report on phase 1: Application and verification of a pilot pavement condition inventory for Virginia interstate flexible pavements." Virginia Highway and Transportation Research Council.
- 7. Pershing, C. A., K. H. McGhee, and D. C. Wyant. 1978. "A study of the relationship between strength, density, permeability, and gradation of aggregate bases." Virginia Highway and Transportation Research Council.
- 8. Virginia Department of Highways and Transportation, <u>Road and Bridge</u> Specifications, 1982.
- 9. McGhee, K. H. 1987. "Status Report, Implementation of a Pavement Management System in Virginia." Virginia Transportation Research Council.

586

. .

·

.

APPENDIX 1

SITE DESCRIPTIONS

	Date Date		1980-82	1980-82	1982	1982	1982	1982-83	1979	1982	1983	1976	1983	1983	1983	1983	1984	1984	1980	1983	1980	1985	ne	1977	1980	ne	ne	1984	ne	ne	ne	ne	1984
	First C Type		I-2	I-2	1-2	1-2	s-5	S-5	SS	SS	1-2	S-5	SS	S5	SS	S-5	Noi	s-5	S-5	Noi	Nor	S-5	IOŅ	Noi	Noi	Not	I-2						
	Completion Date		8-24-71	8-24-71	3-26-75	3-26-75	12-07-69	11-13-70	07-03-70	07-01-74	07-01-74	05-12-76	09-01-73	09-01-73	09-01-73	09-01-73	11-01-74	11-01-74	08-25-71	05-28-74	08-25-71	05-19-71	09-02-74	11-02-71	11-06-75	07-01-74	11-06-75	08-08-74	09-27-74	09-27-74	01-24-74	01-24-74	07-01-73
Design	Thickness Index		9.7	9.7	9.5	9.5	12.0	12.0	12.0	0.6	10.0	10.0	12.0	12.0	12.0	12.0	12.0	12.0	9.0	9.0	9.0	10.0	8.3	12.4	12.4	12.0	9.0	11.7	15.9	15.9	16.8	16.8	13.8
ubbase	Thickness (1n.)		、 6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	ó.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
ŝ	Tvne	- 11-	SC	sc	CTB	CTB	CTB	CTB	CTB	sc	sc	sc	sc	CTB	sc	CTB	sc																
Aggregate Base	Thickness (1n.)		6.0	6.0	4.0	4.0	4.0	4.0	4.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0	4.0	6.0(CTB)	6.0(CTB)	6.0(CTB)	6.0(CTB)	i
Asphaltic Concrete	Thickness (in)		5.2	5.2	4.5	4.5	7.0	7.0	7.0	4.5	5.5	5.5	7.5	7.5	7.5	7.5	7.5	7.5	4.5	4.5	4.5	5.5	4.5	8.0	8.0	7.5	4.5	8.0	7.5	7.5	8.5	8.5	11.5
	¢.		11.52	11.52	4.44	4.44	11.88	9.55	15.38	3.48	23.00	6.88	5.22	2.41	43.36	45.52	35.84	35.84	8.90	11.06	4.29	36.38	7.20	5.26	14.17	49.42	16.08	4.73	11.89	11.89	8.57	8.57	10.15
	MP		7.88	7.88	0.00	0.00	9.55	0.00	14.06	0.00	16.00	1.75	2.41	0.00	41.20	43.36	31.09	31.09	4.29	9.02	0.00	34.81	4.54	0.99	9.43	43.76	10.29	0.00	8.49	8.49	6.22	. 6.22	5.26
	Direction	101122112	SBL	NBL	SBL	NBL	EBL	EBL	EBL	WBL	WBL	SBL	SBL	NBL	NBL	SBL	NBL	SBL	WBL	WBL	WBL	WBL	EBL	NBL	SBL	SBL	SBL	SBL	MBL	EBL	WBL	EBL	SBL
	Drotect Number	10/000 10011	0023-084-108, C501	0023-084-108, C501	6023-052-102, C501	6023-052-102, C501	6297-009-103, C503	6297-009-103, C501	7460-009-101, C501	6460-073-109, C501	0460-073-105, C501	0460-073-101, C501	7029-015-101, C501	7029-015-101, C501	7029-071-111, C501	7029-071-111, C501	7029-071-101, C501	7029-071-101, C501	0060-072-007, C501	0060-072-101, C501	0060-072-003, C501	obse-05e-111, C501	0003-089-102, C502	0207-016-102, C501	6029-056-107, C501	6017-030-103, C501	6029-002-112, C501	6029-002-103, C501	6058-061-105, C501	6058-061-105, C501	6058-061-106, C501	6058-061-106, C501	0207-016-102, C501
	, surfu	county	Scott	Scott	Lee	Lee	Bedford	Bedford	Bedford	Pr. Edward	Pr. Edward	Pr. Edward	Campbell	Campbell	Pittsylvania	Pittsylvania	Pittsylvania	Pittsylvania	Powhatan	Powhatan	Powhatan	Mecklenburg	Stafford	Caroline	Madison	Fauquier	Albemarle	Albemarle	Suffolk	Suffolk	Suffolk	Suffolk	Caroline
	04.00	NULLE	23	23	23	23	460	460	460	460	460	15	29	29	29	29	29	29	60	60	60	58	e	207	29	17	29	29	58	58	58	58	207
	Site		I	5	ŝ	4	5	• •	1	- 30	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	NS I	NS2	NS 3	NS4	NS5

587

•

2	
APPENDIX	

DEFLECTION DATA

588

APPENDIX 3

PAVEMENT PERFORMANCE DATA

r

.

1985 aily ESAL-18	Ratíng Mo - Yr	r 1 DMR	Ratin Mo - Yr	g 2 DMR	Constant A	Constant B	Surface Rated	Years to Term. DMR
	°T - °	001	6 - 81	46	96 F	101	Ortatan1	9 0
	2 - 72	100	6 - 81	83	53.2	1.05	Oricinal	12 2
	9 - 75	100	6 - 81	82	446.0	1.67	Original	6.8
	9 - 75	100	6 - 81	82	446.0	1.67	Original	6.8
	6 - 70	100	5 - 81	83	16.8	0.83	Original	15.1
	5 - 71	100	5 - 81	87	13.0	0.82	Original	18.9
	5 - 81	92	11 - 83	82	30.1	0.91	Original	5.4
	1 - 75	100	4 - 81	75	81.7	1.56	Original	4.3
	1 - 75	100	4 - 81	87	29.7	1.24	Original	7.1
	11 - 76	100	3 - 83	80	41.6	1.51	Original	7.2
	3 - 74	100	3 - 83	76	22.7	1.15	Original	8.9
	3 - 74	100	3 - 83	79	19.9	1.10	Original	9.8
	3 - 74	100	3 - 83	82	12.0	0.90	Original	17.4
	3 - 83	88	2 - 85	84	20.0	0.22	Slurry	10.7
	3 - 83	100	2 - 85	94	22.3	1.75	Original	6.2
	3 - 83	66	2 - 85	89	63.9	2.35	Original	4.1
	12 - 82	95	2 - 85	90	85.6	1.02	Slurry	9.4
	11 - 74	100	12 - 82	88	76.9	1.10	Original	14.2
	12 - 82	98	2 - 85	89	2163.0	2.51	Slurry	6.0
	1 - 83	84	2 - 85	78	91.1	1.45	Original	13.7
	11 - 82	93	12 – 84	87	172.0	2.20	Original	12.5
	10 - 82	93	12 - 84	91	12.2	0.63	Overlay	5.6
	10 - 83	94	1 - 85	87	41.6	2.21	Overlay	5.7
	11 - 82	86	2 - 85	82	18.9	0.85	Original	12.9
	6 - 76	100	5 - 81	91	17.5	0.93	Original	13.6
	5 - 81	81	12 - 82	63	84.7	2.65	Original	7.1
	12 - 82	95	2 - 85	86	2.2	3.55	Original	11.7
	12 - 82	95	2 - 85	86	2.2	3.55	Original	11.7
	12 - 82	88	2 - 85	83	5.3	1.27	Original	12.8
	12 - 82	93	2 - 85	81	0.7	3.65	Original	11.2
	6 - 74	100	6 - 81	86	28.0	1.17	Original	11.0
					Α	verage (Sand	wich)	9.6
					S	td. Dev.		4.0
					•	111		r - -
					S P	td. Dev.	(U) TMDURC	0.6

A-3

589

• ·

•

.

APPENDIX 4

•

٠

AGGREGATE BASE DATA

	Base	Source	Percent	Plasticity
Site No.	Designation	Code	Passing #200	Index
			-	
1	21A	Α	9.0	NP
2	21A	A	9.0	NP
3	21A	Α	9.0	NP
4	21A	А	9.0	NP
5	21A	В	8.9	NP
6	21A	В	8.9	NP
7	21A	В	8.9	NP
8	21A	С	8.1	NP
9	21A	С	8.1	NP
10	21A **	С	8.1	NP
11	21A	D	11.1	NP
12	21A	D	11.1	NP
13	21A	D	11.1	NP
14	21A	D	11.1	NP
15	21A	Е	11.9	NP
16	21A	Е	11.9	NP
17	21A	F	7.8	NP
18	21A	G	7.2	NP
19 [°]	21A	F	7.8	NP
20	21A	Н	9.2	NP
21	SM-GR1	I,	N/A	N/A
22	21A	J	9.3	NP
23	21A	K	9.0	NP
24	21A	L	8.4	NP
25	21A	М	12.2	NP
26	21A	М	12.2	NP